
NASA-CR-203074.

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-96-006

WVU-SRL-96-006

WVU-SCS-TR-96-15

CERC-TR-TM-96-007

.,.,_J "-/_ _ _I!::"

0<--'/3/62-f

Software Project Managerae_t and Measurement on the
World-Wide Wet: (WWW)

by.J -,,,,_h-,t, Rama'_rt._nnotxohn Cadanan _n.c, ar

L

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

/ (_o_olrsh- -."Date

Man_r, Software Engineering

John R. Callahan Date

WVU Principal Investigator

Software Project Management and Measurement on the

World-Wide-Web *

John Callahan

callahan@cs.wvu.edu

Sudhaka Ramakrishnan

sudha_informix.com

NASA/West Virginia University Software IV&V Facility

100 University Drive

Fairmont, WV 26554

304-367-8235, 304-367-8211 (fax)

January 23, 1996

Abstract

We briefly describe a system for forms-based, workflow management that helps members

of a software development team overcome geographical barriers to collaboration. Our system,
called the Web Integrated Software Environment (WISE), is implemented as a World-Wide-

Web service that allows for management and measurement of software development projects

based on dynamic analysis of change activity in the workflow. WISE tracks issues in a software

development process, provides informal communication between the users with different roles,

supports to-do lists, and helps in software process improvement. WISE minimizes the time
devoted to metrics collection and analysis by providing implicit delivery of messages between
users based on the content of project documents. The use of a database in WISE is hidden from

the users who view WISE as maintaining a personal "to-do list" of tasks related to the many

projects on which they may play different roles.
Keywords: Workflow management, verification and validation, software engineering, issue

tracking, software measurement, software metrics, software process

1 Introduction

Collection of metrics and adherence to a disciplined development process are difficult tasks in any

software project. Yet, project developers and managers need to understand their processes in
order to coordinate assigned tasks effectively. To understand their own work processes and assess

the status of an ongoing project, they must be able to measure various aspects of the project

tasks, people, and products. An assessment of a project's status is critical to the reassignment

of resources, adjustment of schedules, and measurement of product quality.

Change activity is a powerful indicator of a project's status. Automated systems that can
handle change requests, track issues, and process electronic forms provide an excellent platform

for tracking the status of the project. 'tVe have developed a World-Wide-Web-based approach

*This work is supported by NASA Grant NAG 5-2129 and NASA Cooperative Research Agreement NCCW-(D40.

More information pertaining to WISE can be found at http://research, ivv.nasa.gov/projects/WISE/wise.htal

calledtheWeb Integrated Software Environment (WISE) that supports meaxurement of change

activity as an implicit part of the software process. WlSE provides a forms-based, workflow

management system that helps members of a software development team overcome geograph-
ical barriers to collaboration. WISE allows for the improvement of the software process in a

realistic environment based on dynamic analysis of changes to information and communication

in the workflow. WISE tracks issues in software development process, pro,ides informal com-
munication between the users with different roles, supports to-do lists, and helps in software

process improvement. WISE minimizes the time devoted to metrics colletnion, analysis, and

reporting tasks not related directly to project activities. Automated toots like WISE focus
on understanding and management of a software process rather than the bureaucracy of an

organization.
Since the summer of 1995, WISE has been used on several projects within the National

Aeronautics and Space Administration (NASA) and the private sector to coordinate and monitor
software verification and validation (V_zV) activities. This paper briefly discusses issues related

to the use of WISE in the automation of software project management and measurement. From

our practical experiences with WISE. we believe that such automated tools can transform chaotic

software development projects into more controlled and manageable processes.

2 Overview

WISE can be installed and made available at a specific URL (Universe Resource Locator) on the

Internet or within a corporate network. Using an appropriate browser 1, each user connects into

the WISE home page to view their personal "to-do lists" (TDLs) available on several projects.

Each person in an organization may be assigned to one or more projects and therefore may have
one or more TDLs under WISE. Figure 1 shows a portion of a person's "to-do list" for a sample

project.
Each item on a person's TDL is called an issue. Each issue contains a set of fields and asso-

ciated values. These fields are a superset of those shown for each issue on the TDL. Individual

issues may be viewed by selecting them as hyperlinks on a TDL. For example. Figure 2 shows an

individual issue (i.e., issue number 2) from the TDL shown in Figure 1. WISE TDLs and issue
forms can be customized for specific organizational needs. For example, a WISE application can

be configured to maintain a list of tasks, an order-entry database, problem reports, or phone

contact lists. Legal types of fields in an issue can include:

• free-form text

• finite selections (single and multiple)

• hypertext (i.e., arbitrary HTML _)

• numbers (integer, real)

• dates and times

• radio buttons

• check boxes

1WISE requires support for HTML 2.0 tables. The Beta and production releases of WISE also require support
for Java. Many WWW browsers support tables including the moat recent versions of NetScape ='n and Mosaic.

2The use of arbitrary HTML allows WISE to be easily integrated with other WWW-hased tools, documents, and
resources on a software project. For example, Figure I shows issue connections to Review Item Discrepancy (RlD)
documents on another WWW server. We have also used this facility to connect WISE almost effortlessly to the

NCSA prototype HyperNews too|.

2

/ ni ":mli:z!ili_/<:_ii:i!i_:iii{_ llmli: iiTi!_iiiii:iiiiiiiii;iiiiTiii_i_::i:i:i_:i_iii!i_71iliii_i::ii::i:

i iiiiiii!!!iiii!7 i #77 ii :LT !iii i:!ii!i;ii77iiiiiiiii!iT:i•

.t,,14 :

-_._ J_mst _DLS_'T_ Ac_lo_ l_mmss
i:!:

"::_ !
:¢:

,.¢.

t i i _ 1 i>t,, _10o:i ' _:<;

' ' "><*--'<"i-9 iiii i - '_i:,': :

l i " i-i_'Jllllilrmiilii'ii'll -- ::::_:

Figure 1: A user's "to-do list" for a sample project

An issue appears on an individual's TDL based on their role(s) on projects. Roles are created

and configured by project administrators to control information access. A user may play more

than one role on a project, but the _-isibility of fields in an issue and the types of changes Mlowed

on an issue form are dependent on the user's role(s). Roles act as filters on all project issues.

This approach provides users with a unique view of their tasks on a project.

Changes to an issue can be submitted by a user directly through the W%VW browser because

issues are implemented using the CGI Forms Interface. Once submitted, the issue changes are

recorded in a log and the issue may disappear from the user's TDL and appear on the TDLs

of other users. The specific workflo_ of issues within an organization is dependent on the

customized definitions of issues, fields, and roles on a project in the WISE site configuration file.

WISE also provides for delivery and submission of forms via electronic mail to accommodate

user's between lnternet firewalls, but such users must read the mail via an HTML capable

browser. Thanks to the ubiquitousne_ of WWW browsers, users can access WISE through the

World-Wide-Web from a variety of hardware platforms and operating systems.

WISE also provides on-demand access to project mettles. WISE keeps track of changes

to issues and other project events. WISE collects metrics based on these events and presents

graphical views of the project statistics. In one project, for example, issues can track problems

discovered during development. Issues can cycle from an open status to a so/red or closed status.

Issues marked as solved are tho6e problems that have been diagnosed but not fixed. Once a

problem is fixed, the issue can be marked closed. Figure _ depicts metrics for a user's project

plotted over time. It shows that the number of open issues initially exceeds the number of closed

issues and that very few issues are recorded as "solved" before being closed. Furthermore, this

organization noted that the trend in open vs. closed issues helped to estimate the time of their
first software release as the projected time when the number of open issues fell below the number

of closed issues.
WISE is non-intrusive because it provides a "to-do" list of each issues to each developer in

the team. Each issue in the "to-do" list can be acted upon by changes to the values of fields in asa

issue. The types of changes allowed are dependent on a user's assigned role(s). The composition
of the forms and views defines the totality of the software process. Thus, the process is not

fixed or globally defined by the manager, but it is highly dynamic and may change based on the
different roles of development personnel throughout the lifecycle of a development effort.

3 Process hnprovement

In order to achieve the goals of any software project, one must be able to assess the quality of

a development process itself. _'e must be able to improve the software process continually and

determine if it is progressing at an acceptable rate. To produce quality products and improve

the capability of the organization to produce better products, the software process must improve
as well.

Software maturity frameworks are usually characterized by different levels in which an orga-

nization can be categorized depending upon the results of the assessment of the organization's

software process [7]. Many case studies have been conducted and have shown that there is a
need to turn the corner from chaotic, unpredictable co6t to a more manageable and controlled

software process whereby schedule slippage and cost overruns are avoided.
Automated support of measurement plays an important role in software process improve-

ment. Project managers rely on a range of methods for measurement including status reporting

and change management. Handling change requests, problem reports, activity log entries, and
other issues in a software development effort becomes quite complicated even in small groups.
We believe that automation plays a key role in increasing productivity, controlling quality, and

introducing predictability into the software process. But the effective use of software technol-

ogy is limited by ill-defined processes and poor process management. These problems must be
addressed for us to be able to apply new tools and technology. Much research in this area has

shown that incremental automation in software management and measurement is necessary to

achieve successful software process improvement.
The focus of more recent approaches to process improvement has been through analysis and

synthesis of organizational experience. Information collected about a workflow in a repository
of such experience can be analyzed for specific organizations to help them improve weak areas

and capitalize on strengths. The Experience Factory mechanism [2] is an approach to improv-

ing software development processes. The Experience Factory packages the experiences of an

organization and measures various software process and products. WISE can be used to collect
valuable information related to issue resolution in a database implicitly. This information sheds

light on the issue solving capacity of a development group and its products. For example, mod-
ules with the most severe issues and the average time for solving issues are two statistics that

can be obtained by analyzing software process change data.

3.1 Measurement

Software metrics can be defined as the continuous application of measurement-based techniques

to the software development process and its products. Metrics supply meaningful and timely

management information used to improve a process and its products [12]. Software metrics are
standardized ways of measuring the attribute of software processes, products and services.

For example, the Goals-Questions-Metrics (GQM) approach [1] has been widely used to

i.i i !!! iii iiiiiiii !ii iiiii!iiiiiiiiiiiiii!i!iiiii!iiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiii!!!i!!i!i!ili!iili!iiiii!iiiiiiiiiiiiill:!ii!iiii i

:':_!i:_ _i _J::._._ _._:_:==

" •::i i::::i:!i/-_:__! I =========================:i_:: ./:i:.:.:::!::-:_:i::lii_l._

":..................:..........:..........:-._......:"_':-:.........................:......... _:: j _::::_:'-:_"_":'._::_::_::'""_>_"_:_7_'7" " :.:.!!'_ '. 1:5:_._:_:

::_,_I_ ill ::mml_ml_ :i::::!:_.:::-::.: .. ::::_.i::-:": :.:-_.:. : _ •. ..:-. _:!!_,

:" !t _::": .-:I....:LS::":- :: :. :::_:5_:i:.:::::5.::i::.i:- :.: :5:::5:5-:- -:,." :5.5 ._::_i::5.: .-:- ::!Si':i_iSi_

!:::::}::_"i_!'::.........:........... ::::Ji!i!::_:!?!:::":!"........._..........:'i!:i_i:iii:::!i:ii:.i_i:ii::_::i!i.::i:_:?:.:!::..::_:_. : _/:_.: " .::::::-._.i::i_ii!!i_i

:_¢I_1_ -1 ::_l_._m_ ,'1 . .:.:. .:.:::. : : .: .::.:::::._.: . ..:.. : :..:.::..:_.:_ :

:::,..i._.."...ii_;_...:........_,_.ii_i_i_i!_.::_-:--.........................._.........:'_i;!!'-!i::ii_i}ii_}_i_:!_i_iiiii_""'_"'_:-_:'_:_:_!!":......._:_i_i:-::_i:_!'_":'"":_:_lili

"" " .: Illll II_ lm_l_l_t _ 't:I¢1 _ml_l_ _ _a:l_m Itll _ _m_jm_la_ "". • _ :-. - . : :: .<... .:.>....:..->......._ : . _:-_$::..... .. . : -:.:

Figure 2: A WISE issue for the sample project (issue number 2)

5

:.:: :_i::_i :::::::::::::::::::::::::::::::::!:::_:::::i::iiii_::_i.::::::::::::::::::::::::::::_ _ _i-]:: _:)_:::::-_i!_i_::============================_:_i::_i!::::i!:!::-_:i_!_:i:_(_ii::i]
. _:_:._i:i:i:::>_-_. " _:._::!-!:::_-:: ::.i'_:!:!:_:i :::::::::::::::::::::::::.: :::i:::::::_::_:_:_:_._:_,_

i

! J

_ PGITIOn__k:e Aim

as zt IM'_ -L-1-:115 ll:l&_]_'T i

i i

180

160

o

Oe

_ 4e

...... I I I | i t I I I I I l'[] ""I"" _'"

............... ___.,'- -- :.._: _-""

_---,

.!

Figure 3: Time plot of open, solved, and closed issues on a project

selectmetricsbasedontheir relation to overall organizational goals. Instead of collecting metrics

at random, measurement is based on the goals of a project. To determine if goals are being

achieved, a set of questions is constructed related to each goal. To answer each question, metrics
are needed. The metrics are organized into this hierarchy to provide continuous assessment of a

project's status. The technique is a powerful way to track progress towards project objectives.
For over a decade, the Software Engineering Laboratory (SEL) at NASA's Goddard Space Flight

Center has significant experience in measuring software processes for over a decade. Their studies
have presented the result of collecting valid software engineering data [3]. Data collected at the
SEL was based on the changes made to the software during development. It was later followed

by evaluating software development processes through analysis of change data.
Metrics can be used to understand a software pr_, evaluate a software product and goals,

control resources and products, and predict attributes of a software process in the future. To

improve the software process, WISE collects useful data in terms of changes and responses
made to issues generated during the normal workflow of a software project. An issue created
in the workflow may be an idea, a question, an error, or any other identifiable "chunk" of

communication between project participants. An issue is encapsulated in a form and stored in a

backend database. Participants can view issues dynamically and generate metrics based on issue

properties. Database queries can extract important information relevant to project metrics.
Some software metrics represent measures of the properties of a software process. Using the

GQM approach, for instance, a metrics program can address many corporate needs including
measurement of process maturity, a tools-evaluation database, and trend analysis [1 l].lt is highly
recommended to embed metrics tools in the existing development environment. Developers

should understand the need for metrics, otherwise they will neither provide accurate data or use

the results of metric analysis. Secondly, metrics should be kept close to the developers. This way

the developers would be able to access measurements, evaluate them, and take action as part

of standard operating procedure and without hindering schedule or budget. WISE metrics are

generated implicitly and can be viewed at any stage of the project by all developers. A separate
metrics group is not present that collects metrics and analyzes them. The time devoted to
metrics collection and analysis is minimized by WISE. The front end of WISE is kept very

simple so that developers need not become experts in measurement theory.

WISE generates analysis based on many aspects of a workflow model that are relative to
the changes in issue forms. This avoids burdening users with the task of metric collection. It is

important to remember that metrics can only show problems and give ideas as to what can be
done. It is the actions taken as a result of analyzing the data that yield improvements to the

process. This is the reason why it is critical for metrics users to understand that measurement
is not the goal. The goal is improvement, through measurement, analysis, and feedback [6]. In

[6], a practical view of software measurement that formed the basis for a company-wide software
metrics initiative within Motorola has been described. The software process program must be

defined in a precise powerful and rigorous formalism. Such an environment becomes a vehicle for

the organization of tools for facilitating development and maintenance of the specified process

[10l.
WISE is programmable and can be customized to the specific process of an organization, but

such processes are specified in terms of behavioral descmptions of people, roles, and form-based
information. Such an approach yields an incremental, bottom-up definition of an organization's

processes. There are many advantages to using behavioral descriptions to specify software
process models [13]. The behavioral approach describes software development as a collection of

activities or processes which may take place concurrently. This approach leads to better automa-
tion, message passing for communication, and provides greater visibility for software processes

within an organization. For instance, one should try to describe the software proce_ in terms of
the events that occur during the development effort rather than changes to the product. Metrics

should be based on analysis of these events. WISE addresses this by logging events in order

7

to trackissue, throughout their lifecycle. Other software process tools, like Marvel [8], define

processes from the top-down: they help in defining the detailed software configuration process
by informing users which components are potentially affected before performing subsequent

editing, compiling, and other coding activities. Tools such as Marvel assist in development and
maintenance efforts through controlled automation, but do not address the source or motivation

of changes throughout the lifecycle.
In our deployment of WISE, we have been careful to integrate it carefully into existing

process environments. Many software tools play an important role in the software development

process but use of a tool within a process changes the process itself. For example, some tools are
used by users taking on a specific role. Other tools are used by users in multiple roles, during

many activities and for processing documents of multiple users. Inserting an tool could have a

significant impact on the development process. In order to control the insertion of the tool a
method called "Tool Insertion Method" [5] has been proposed. The key elements of TIM are

tracking the progress of a tool used to improve the process. Indeed, we have used WISE in the

development of WISE itself to study the effects of such changes.
The issue-based approach used in WISE is dominant not only in problem tracking, but is

critical in capturing design rationale, informal information, requirements, and change requests.

Design dependenci_ can be represented in a issue-based style [9] and tracked throughout the

lifecycle of a project. In all cases, participants in an issue-based discussion contribute their

expertise and viewpoints to discover and resolve issues. Each issue is followed by one or more

positions that respond to an issue. The issue-based model is now almost 20 years old. There is
a clear need for automated tools for software management and measurement created by a focus

on understanding, managing, and improving the software process.

4 Conclusions

WISE is an automated system that helps in software project management and measurement. We
have described how such tools can help in improving software development processes through

tracking and measurement of change activities on project issues. From our practical experi-
ence with WISE on several projects, we believe that such automated tools hold much promise

for providing realistic assessments of software development projects particularly in large-scale
projects with verification and validation contracts. While our use of WISE has been successful,

many issues remain problematic including:

Metric frameworks More work is needed to construct metric hierarchies for organizations

based on specific strengths, weaknesses, and corporate policies. For example, the skill levels

of programmers in different groups within the same company vary widely. Such differences

have a profound effect on the ability of measurement tools to predict performance.

Security and privacy These are a major concern in WISE. Several studies [4] have found

high participation in automated measurement project by users who feel that they control
access to workflow information. Users that feel they are being watched and judged by

management will not use or they will circumvent such tools. From our experience, we also
feel that measurement should focus on the individual user and let the user control the per-

missions and visibility of their workflow transactions. WISE allows users to define history

visibility so that even managers cannot access change data without explicit permission

from the user who owns the data.

Process validation The bottom-up approach to process definition through forms and roles
sometimes creates "black holes" in the process where issues can remain unresolved. We

have considered the use of finite-state machine model checking tools to find incomplete

and inconsistent paths in the composite process as a part of the WISE system.

8

Althoughthe definition of an organizational process through roles and the workflow of elec-
tronic forms may be indirect and imprecise, WISE provides a flexible platform for accommodat-

ing the processes changes. For instance, on several projects it is only after an initial prototype
that we discovered that new roles were needed, additional issue fields had to be added, and new

field had to be added to forms in a project. This incremental approach, however, is much more

productive that trying to define a complete and consistent process from the top-down. Indeed,
such changes reveal the progress (or lack of) in efforts to improve development processes. We
continue to examine this "meta-view" of process improvement as well as collecting and analyzing

results of current projects using WISE.

References

[1] V. Basili. Software modeling and measurement: The goal�question�metric paradigm. Tech-
nical Report CS-TR-2956, University of Maryland Computer Science Department. College

Park, Maryland, September 1992.

[2] V. Basili. The experience factory and its relationship to other improvement paradigms. In
Proceedings of the _th European Software Engineering Conference, Garmtsh-Partenktrchen,

Germany, September 1993.

[3] V. Basili and D. Weiss. A methodology for collecting valid software engineering data.
IEEE/ACM Transactions on Software Engineering, SE-10(6):728-738. November 1984.

[4] M. et al. Bradac. Prototyping a process monitoring experiment. In Proceedings of the 15 th
International Conference on Sofiu'are Engineering, pages 155-165, May 1993.

[5] T. Bruckhaus. Tim: A tool insertion method. In Proceedings of the 1994 CAS Conference.
October 1994.

[6] M. Daskalantonakis. A practical view of software measurement and implementation ex-
pereinces with in motorola. IEEE Transactions on Software Engineenng. 18(11):998-1010,
November 1992.

[7] W. Humphries. Managing the Software Process. Addison-Wesley, sei series in software

engineering edition, 1989.

[8] G. Kaiser and P. Feiler. Intelligent assistance for software development and maintenance.
IEEE Software, pages 40-49, May 1988.

[9] M. Lubras. Representing design dependancies in an issue-based style. IEEE Software, pages
81 +89, July 1991.

[10] L. Osterweil. Software processes are software too. Commumcations of the ACM, May 1987.

[I1] S.L. Pfleeger. Lessons learned in building a corporate metrics program. IEEE Software,

pages 67-74, May 1993.

[12] L. Westfall. Software metrics that meet your information needs. In Proceedings of the ,fh

International Conference on Software Quality, October 1994.

[13] L. Williams. Software process modeling. In Proceedings of the 10 th International Conference

on Software Engineering, pages 174-186, April 1988.

